The AGC Kinase MtIRE: A Link to Phospholipid Signaling During Nodulation?
نویسندگان
چکیده
The development of nitrogen fixing root nodules is complex and involves an interplay of signaling processes. During maturation of plant host cells and their endocytosed rhizobia in symbiosomes, host cells and symbiosomes expand. This expansion is accompanied by a large quantity of membrane biogenesis. We recently characterized an AGC kinase gene, MtIRE, that could play a role in this expansion. MtIRE's expression coincides with host cell and symbiosome expansion in the proximal side of the invasion zone in developing Medicago truncatula nodules. MtIRE's closest homolog is the Arabidopsis AGC kinase family IRE gene, which regulates root hair elongation. AGC kinases are regulated by phospholipid signaling in animals and fungi as well as in the several instances where they have been studied in plants. Here we suggest that a phospholipid signaling pathway may also activate MtIRE activity and propose possible upstream activators of MtIRE protein's presumed AGC kinase activity.
منابع مشابه
An IRE-like AGC kinase gene, MtIRE, has unique expression in the invasion zone of developing root nodules in Medicago truncatula.
The AGC protein kinase family (cAMP-dependent protein kinases A, cGMP-dependent protein kinases G, and phospholipid-dependent protein kinases C) have important roles regulating growth and development in animals and fungi. They are activated via lipid second messengers by 3-phosphoinositide-dependent protein kinase coupling lipid signals to phosphorylation of the AGC kinases. These phosphorylate...
متن کاملEvolutionary Adaptations of Plant AGC Kinases: From Light Signaling to Cell Polarity Regulation
Signaling and trafficking over membranes involves a plethora of transmembrane proteins that control the flow of compounds or relay specific signaling events. Next to external cues, internal stimuli can modify the activity or abundance of these proteins at the plasma membrane (PM). One such regulatory mechanism is protein phosphorylation by membrane-associated kinases, several of which are AGC k...
متن کاملPhosphorylation and activation of PINOID by the phospholipid signaling kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) in Arabidopsis.
Activity of the serine-threonine protein kinase PINOID (PID) has been implicated in the asymmetrical localization of the membrane-associated PINFORMED (PIN) family of auxin transport facilitators. However, the means by which PID regulates PIN protein distribution is unknown. We have used recombinant PID protein to dissect the regulation of PID activity in vitro. We demonstrate that intramolecul...
متن کاملCloning and characterization of a novel radish protein kinase which is homologous to fungal cot-I like and animal Ndr protein kinases.
According to the similarity of the amino acid sequences in their catalytic domains, eukaryotic protein kinases have been classified into the five main groups: 'AGC', 'CaMK', 'CMGC', 'PTK' and 'other'. The AGC group, represented by the cyclic nucleotide-dependent kinases (PKA and PKG), the calcium-phospholipid-dependent kinases (PKC) and the ribosomal S6 protein kinases, are poorly characterized...
متن کاملMULTI-AUTHOR REVIEW Role of AGC kinases in plant growth and stress responses
AGC kinases are important regulators of cell growth, metabolism, division, and survival in mammalian systems. Mutation or deregulation of members of this family of protein kinases contribute to the pathogenesis of many human diseases, including cancer and diabetes. Although AGC kinases are conserved in the plant kingdom, little is known about their molecular functions and targets. Some of the b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant signaling & behavior
دوره 2 4 شماره
صفحات -
تاریخ انتشار 2007